Farming Sunlight From Space

Whether they’re producing voltage directly from solar rays or focusing them to melt salt like Ivanpah, even Earth’s biggest and baddest solar power plants are hamstrung by all this damnable atmosphere getting in the way. But a new kind of off-world solar energy plant could soon provide the whole planet with plenty of power—we just have to finish figuring out how to build and operate it. Energy Production in Spaaaaaaaace! With the advent of silicon-based photovoltaic solar panels—the kind that directly convert solar energy to electrical current—some 60 years ago, researchers immediately looked to the skies as the ideal place to collect solar energy. coque iphone pas cher Up there, you don’t have miles and miles of atmosphere and clouds absorbing, scattering, or blocking out the sun’s incoming rays. That means photovoltaic panels should, conceivably, be able to operate at (or very near) their theoretical efficiency limits. Plus, if you position a solar power satellite (SPS) properly over the equator, it will only reside in the Earth’s shadow for a few hours every year and thereby provide nearly non-stop energy. coque iphone 8 The idea of space-based solar power (SBSP) was formalized in the seminal 1968 report, Power from the Sun: Its Future, by American aerospace engineer Peter Glaser. The paper set forth a conceptual system for collecting unhampered solar energy from massive extra-atmospheric arrays of photovoltaic cells set in geosynchronous orbit above the equator, and transmitting it wirelessly back to Earth where it would be used by terrestrial power grids. In theory, with enough orbiting “solar farms,” the energy needs of not just the U.S. coque iphone pas cher but the entire world could be met. In his paper, Glaser argued that while building, launching, and operating such a power plant was currently beyond the reach of scientific knowledge at the time, those technological advances would be within our grasp in the coming years and decades. So, are we any closer to freeing the entire world from its energy woes with orbiting solar farms than we were at the start of the Space Age? Sure, but we’ve still got some work to do before that actually happens. coque iphone en ligne Specifically, there are a number aspects that we need to iron out before something like this actually comes to fruition. Launch It – What It Will Take to Farm Sunlight from SpaceExpand The first issue is the fact that a commercial-grade SPS would be simply gargantuan. In order to produce a GW of power, you’d need a massive collection area 0.5 kilometers long by 5.2 kilometers wide and weighing tens of thousands of tons. No matter how tightly you fold it up, there’s simply no way to get a fully formed SPS from the surface of the Earth into orbit given our current launch capabilities that wouldn’t be cost-prohibitive. So, for example, let’s assume that a standard solar panel weighs about 20 kg per kw. Not including the necessary support and transmission components, a 4 GW capacity would weigh a whopping 80,000 tons. It would require nearly 9,000 Atlas V rockets (each with a max lifting ability of 8,900 kg to GEO) to free that structure from Earth’s gravitational grip, or at least 9,000 trips to geosynchronous orbit and back, and cost somewhere in the neighborhood of $320 billion. That’s just to get the solar panels into position, not to assemble them or operate them—just to get them up there. Nor is that accounting for the environmental impact of all those rocket launches. However, while reusable space launch systems like Space X’s Dragon Capsule can only lift a fraction of what an Atlas V can, their low-cost nature could provide significant cost savings and drastically shortened turnaround times should the project be attempted today. Similarly, since we’re not rushing to beat another nation to the punch (something of this scale would demand the financial and technological assistance of every nation on Earth), slower but more cost efficient delivery methods like ion propulsion could also be deployed to shuttle materials from Low Earth Orbit up to Geosynchronous Earth Orbit. Essentially, LEO would become a staging area where materials would be tugged up to GEO by a fleet of as-of-yet-uninvented space transport vehicles. A secondary option proposed by American physicist Gerard O’Neill in the 1970s would have avoided the high cost of launching materials from Earth by instead constructing the SPS from materials mined on the Moon. This would have offered significant launch cost savings given the Moon’s far lower gravity, but would have required NASA to invent and deploy mass drivers (electromagnetic rail guns designed to throw packages into space) on the Moon’s surface. Though this seems like it would cost a hell of a lot more than just using rockets, a 1979 report by General Dynamics’ Convair Division estimated that using lunar resources would be cost effective should we build out 30 or so 10GW SPS’s—for a total capacity of 300 GW, or enough to satisfy projected U.S. electricity demand in the 2000-2030 period. Build It – What It Will Take to Farm Sunlight from SpaceExpand So even if we manage to get these tens of thousands of tons of stuff into orbit, the next issue would be putting it all together. This of course comes with its own set of challenges. coque iphone pas cher The structure, for example, wouldn’t need to support itself against gravity or the elements as terrestrial-based power plants do, but would have to defend against micrometeors and solar flares. There’s also the matter of who would build it. When NASA took a look at the issue in the late 1970s, it estimated necessary construction time at around 30 years. Three decades of build time. We can barely keep highly-trained astronauts out there on the ISS for more than a year, and a project like this would require either a veritable army of orbital workers (we’re talking a New Deal-scale workforce) continually shuttled back and forth to the surface, or we’d need an army of robots to do the same. NASA’s 1970s solution was to use a fleet of “beam builder” robots to roll and assemble sheets of aluminum into trusses tens of kilometers long. This method would reduce the necessary workforce of humans to a supervisory skeleton crew, which in turn would minimize training, operating, and liability costs. However, even with generous estimates of mechanization capabilities at the time, NASA estimated it would need at least 1,000 full-time astronauts on hand at any given moment—again, that’s just counting astronauts, not the additional doctors, cooks, cleaners, and other service workers they’d require to live in orbit, or the massive amount of resources (air, water, and food) that they’d consume. NASA estimated that the number of support workers would outnumber the builders by a factor of 10 to 1. And though this would be a massively expensive undertaking, it would also open up a huge new industry for anyone brave enough to work and live 22,000 miles up. Maintain It Not to put the cart before the horse, but assuming we do somehow manage to construct an SPS, keeping it from falling out of the sky could be tricky. The ISS for example, the largest orbiting man-made satellite in existence, uses regularly refilled gas propulsion to keep its orbit from fatally degrading. But given the monstrous size of these power plants, we’d have to devise a new, more efficient means of keeping them aloft. Solar light sails have been suggested as one solution, propped up either by the suns rays or by ground-based laser and radio energy. This energy would essentially counteract the planet’s gravitational pull and push the SPS just hard enough to keep it from falling back to Earth. But we’re still years away from such technology being readily available. Another solution, which is a bit closer to reality, is to convert solar-generated, DC power into microwaves and beam that energy up to the satellite to provide operational power. Researchers have been playing with this technology since the 1980s, and JAXA (Japan’s space agency) recently announced that a proposed small-scale SPS might use this method when it comes online in 2040. Get It Back By far, the biggest stumbling block for SPS technology involves getting it from space to your wall socket—it’s not like we can just run a huge extension cord up there. Instead, we’ll have to rely on a neophyte power transmission technology known as “wireless power transmission” (WPT). WPT converts DC current to microwave frequency and shoots it to a distant receiver where it is converted back to electricity and added to the power grid—essentially the reverse of what we’d use to keep the SPS aloft, as described above. This technology is far closer to science than fiction. It was first demonstrated in 1964 when American electrical engineer William C Brown demonstrated a microwave beam-powered helicopter for Walter Cronkite on the CBS Evening News. soldes coque iphone Subsequent developments by Raytheon in the 1970s saw microwaves transmit 30kW of energy over the course of a mile with 84 percent efficiency. And while a 5 GW beam would require massive arrays of receiver dishes spread over large uninhabited areas of the planet, the UN’s non-profit SunSat Energy Council has stated that this type of beam would be of such low density that it wouldn’t be capable of harming plant and animal life. You wouldn’t get a kitten in a microwave effect if you walked through this beam—in fact, it would reportedly warm your skin less than the Sun’s natural rays would. While WPT technology is certainly possible, there are a number of necessary factors to make it plausible. Factors like how you would generate the microwave signal in the first place. In the 1970s, when NASA first looked at the issue, the state of the art still used vacuum tubes. Today, semiconductor amplifiers offer superior efficiencies at a lower price point, but at the 1 GW scale, an SPS would need somewhere around the order of 100 million such devices to create a powerful-enough signal. There’s also the matter of the specific frequency the beam will take, lest it interfere with existing technologies. Somewhere in the 1 – 10 GHz range (around 5.8 GHz) is most likely, given the need to balance between antenna size and atmospheric penetration capabilities as well as accounting for existing band usage. Then there’s the issue of aiming the damn thing to hit a receiver dish 36,000 km away. You wouldn’t be able to do it with a single antenna. An SPS would require a massive number of smaller coordinated and synchronized antennae (up to a billion per satellite by some estimates) each precisely aimed at a 3km wide rectifying antenna on the ground, and aimed with an accuracy of just 10 µrad (and an efficiency of about 85 percent). That’s an unprecedented level of accuracy—not even the beam line tolerances at CERN are that tight. For all intents and purposes, it’s beyond our capabilities at this time. Where to Go from Here While this may seem like just as much of a Herculean task as it was in the 1970s, SBSP could well become a viable energy source within our lifetimes. Japan has already announced plans to build its own SPS within the next 25 years. Given both the rapid development of renewable energy over the past decade and the shift from public to private spaceflight—not to mention the growing need for more and cleaner power—the stars could soon align in favor of this ambitious project.

Michael Tellinger – Author, Scientist, Explorer

Michael Tellinger graduated from Wits University in 1983 with a B. Pharm degree. Michael Tellinger, author, scientist, explorer, has become a real-life Indiana Jones, making ground-breaking discoveries about ancient vanished civilizations at the southern tip of Africa. His continued effort and analytical scientific approach have produced stunning new evidence that will force us to rethink our origins and rewrite our history books. coque iphone 6 Michael Tellinger has become an international authority on the origins of humankind and the vanished civilizations of southern Africa. coque iphone 6 Scholars have told us that the first civilization on Earth emerged in a land called Sumer some 6000 years ago. New archaeological and scientific discoveries made by Michael Tellinger, Johan Heine and a team of leading scientists, show that the Sumerians and even the Egyptians inherited all their knowledge from an earlier civilization that lived at the southern tip of Africa more than 200,000 years ago… mining gold. UFOlogy.

These were also the people who carved the first Horus bird, the first Sphinx, built the first pyramids and built an accurate stone calendar right in the heart of it all. Adam’s Calendar, now referred to as ENKI’s CALENDAR, is the flagship among millions of circular stone ruins, ancient roads, agricultural terraces and thousands of ancient mines, left behind by a vanished civilization which we now call the FIRST PEOPLE. acheter coque iphone en ligne These settlements cover most of southern Africa, an area about twice the size of Texas. They carved detailed images into the hardest rock, worshiped the sun, and were the first to carve an image of the Egyptian Ankh – key of life and universal knowledge, 200,000 years before the Egyptians came to light. coque iphone Michael’s research reveals many of the latest scientific measurements and presents evidence that this vanished civilization had an astute knowledge of the laws of nature and the generation of free ENERGY from Mother Earth for all their needs. vente de coque iphone They used the power of sound and frequency as a source of energy, which underpins the scientific conclusions reached by Michael. In his book Temples of the African Gods he graphically exposes these discoveries that will be the catalyst for rewriting our ancient human history. This work is a continuation of Tellinger’s previous books Slave Species of god and Adam’s Calendar which have become favourites with readers in over 30 countries. soldes coque iphone Before Michael Tellinger, there was only novel speculation about the origins of stone remains on the continent of Africa. But with Michael’s dedication to discovering, tracking, and revealing vanished civilizations, it’s now possible to reach into the minds of our ancient forefathers to discover a purpose greater than what we might have expected. Certainly, it’s now well acknowledged that they were further technologically advanced than the present day, and far more astute than what we are taught through the less than accurate cave-man mentality of our educational systems.

Video: Overview – Astronauts’ Life-Changing Stories of Earth

On the 40th anniversary of the famous ‘Blue Marble’ photograph taken of Earth from space, Planetary Collective presents a short film documenting astronauts’ life-changing stories of seeing the Earth from the outside – a perspective-altering experience often described as the Overview Effect. coque iphone

OVERVIEW from Planetary Collective on Vimeo.

The Overview Effect, first described by author Frank White in 1987, is an experience that transforms astronauts’ perspective of the planet and mankind’s place upon it. coque iphone 2019 Common features of the experience are a feeling of awe for the planet, a profound understanding of the interconnection of all life, and a renewed sense of responsibility for taking care of the environment. coque iphone ‘Overview’ is a short film that explores this phenomenon through interviews with five astronauts who have experienced the Overview Effect. coque iphone pas cher The film also features insights from commentators and thinkers on the wider implications and importance of this understanding for society, and our relationship to the environment. coque iphone en ligne CAST • EDGAR MITCHELL – Apollo 14 astronaut and founder of the Institute of Noetic Sciences • RON GARAN – ISS astronaut and founder of humanitarian organization Fragile Oasis • NICOLE STOTT – Shuttle and ISS astronaut and member of Fragile Oasis • JEFF HOFFMAN – Shuttle astronaut and senior lecturer at MIT • SHANE KIMBROUGH – Shuttle/ISS astronaut and Lieutenant Colonel in the US Army • FRANK WHITE – space theorist and author of the book ‘The Overview Effect’ • DAVID LOY- philosopher and author • DAVID BEAVER – philosopher and co-founder of The Overview Institute ———- CREW Producer: STEVE KENNEDY Director: GUY REID Editor: STEVE KENNEDY Director of Photography: CHRISTOPHER FERSTAD Original Score: HUMAN SUITS Dubbing Mixer: PATCH MORRISON ———- TECHNICAL INFORMATION Filmed with Canon 5D Mk ii.